Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li\textsubscript{7}La\textsubscript{3}Zr\textsubscript{2}O\textsubscript{12} Solid Electrolyte

Lucienne Buannic,*1,10† Brahim Orayech,† Juan-Miguel López Del Amo,† Javier Carrasco,† Nebil A. Katcho,† Frédéric Aguesse,†10 William Manalastas,† Wei Zhang,†2 John Kilner,†,8 and Anna Llordés*1,‡

1CIC EnergiGUNE, Parque Tecnológico de Álava, 48, 01510 Miñano, Álava, Spain
2IKERBASQUE, The Basque Foundation for Science, 48013 Bilbao, Spain
§Department of Materials, Imperial College, London SW7 2AZ, United Kingdom

Supporting Information

ABSTRACT: Solid state electrolytes could address the current safety concerns of lithium-ion batteries as well as provide higher electrochemical stability and energy density. Among solid electrolyte contenders, garnet-structured Li\textsubscript{7}La\textsubscript{3}Zr\textsubscript{2}O\textsubscript{12} appears as a particularly promising material owing to its wide electrochemical stability window; however, its ionic conductivity remains an order of magnitude below that of ubiquitous liquid electrolytes. Here, we present an innovative dual substitution strategy developed to enhance Li-ion mobility in garnet-structured solid electrolytes. A first dopant cation, Ga3+, is introduced on the Li sites to stabilize the fast-conducting cubic phase. Simultaneously, a second cation, Sc3+, is used to partially populate the Zr sites, which consequently increases the concentration of Li ions by charge compensation. This aliovalent dual substitution strategy allows fine-tuning of the number of charge carriers in the cubic Li\textsubscript{7}La\textsubscript{3}Zr\textsubscript{2}O\textsubscript{12} according to the resulting stoichiometry, Li\textsubscript{7-}\textsubscript{3x}Ga\textsubscript{x}La\textsubscript{3}Zr\textsubscript{2-x}Sc\textsubscript{x}O\textsubscript{12}. The coexistence of Ga and Sc cations in the garnet structure is confirmed by a set of simulation and experimental techniques: DFT calculations, XRD, ICP, SEM, STEM, EDS, solid state NMR, and EIS. This thorough characterization highlights a particular cationic distribution in Li\textsubscript{6.65}Ga\textsubscript{0.15}La\textsubscript{3}Zr\textsubscript{1.95}Sc\textsubscript{0.10}O\textsubscript{12}, with preferential Ga3+ occupation of tetrahedral Li\textsubscript{3Ga} sites over the distorted octahedral La\textsubscript{3Ga} sites. 7Li NMR reveals a heterogeneous distribution of Li charge carriers with distinct mobilities. This unique Li local structure has a beneficial effect on the transport properties of the garnet, enhancing the ionic conductivity and lowering the activation energy, with values of 1.8 × 10^{-3} S cm^{-1} at 300 K and 0.29 eV in the temperature range of 180 to 340 K, respectively.